//SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.17;
import { Base64 } from "@openzeppelin/contracts/utils/Base64.sol";
import { Strings } from "@openzeppelin/contracts/utils/Strings.sol";
import "hardhat/console.sol";
/// @title Programmable Keypair NFT Metadata
///
/// @dev This is the contract for the PKP NFTs
///
/// Simply put, whomever owns a PKP NFT can ask that PKP to sign a message.
/// The owner can also grant signing permissions to other eth addresses
/// or lit actions
contract PKPNFTMetadata {
using Strings for uint256;
/* ========== STATE VARIABLES ========== */
/* ========== CONSTRUCTOR ========== */
constructor() {}
/* ========== VIEWS ========== */
function bytesToHex(
bytes memory buffer
) public pure returns (string memory) {
// Fixed buffer size for hexadecimal convertion
bytes memory converted = new bytes(buffer.length * 2);
bytes memory _base = "0123456789abcdef";
for (uint256 i = 0; i < buffer.length; i++) {
converted[i * 2] = _base[uint8(buffer[i]) / _base.length];
converted[i * 2 + 1] = _base[uint8(buffer[i]) % _base.length];
}
return string(abi.encodePacked("0x", converted));
}
function tokenURI(
uint256 tokenId,
bytes memory pubKey,
address ethAddress
) public pure returns (string memory) {
string
memory svgData = "<svg xmlns='http://www.w3.org/2000/svg' width='1080' height='1080' fill='none' xmlns:v='https://vecta.io/nano'><path d='M363.076 392.227s-.977 18.524-36.874 78.947c-41.576 70.018-45.481 151.978-3.017 220.4 89.521 144.245 332.481 141.52 422.556.089 34.832-54.707 44.816-117.479 32.924-181.248 0 0-28.819-133.144-127.237-217.099 1.553 1.308 5.369 19.122 6.101 26.722 2.241 23.354.045 47.838-7.787 70.062-5.746 16.33-13.711 30.467-27.178 41.368 0-3.811-.954-10.635-.976-12.918-.644-46.508-18.659-89.582-48.011-125.743-25.647-31.552-60.812-53.089-97.84-68.932.931 3.191 2.662 16.419 2.906 19.033 1.908 21.958 2.263 52.713-.621 74.649s-7.832 33.878-14.554 54.441c-10.184 31.175-24.05 54.285-41.621 82.004-3.24 5.096-12.913 19.078-18.082 26.146 0 0-8.897-56.191-40.667-87.921h-.022z' fill='#000'/><path d='M562.5 27.28l410.279 236.874c13.923 8.039 22.5 22.895 22.5 38.971v473.75c0 16.076-8.577 30.932-22.5 38.971L562.5 1052.72c-13.923 8.04-31.077 8.04-45 0L107.221 815.846c-13.923-8.039-22.5-22.895-22.5-38.971v-473.75a45 45 0 0 1 22.5-38.971L517.5 27.28a45 45 0 0 1 45 0z' stroke='#000' stroke-width='24.75'/></svg>";
string memory pubkeyStr = bytesToHex(pubKey);
// console.log("pubkeyStr");
// console.log(pubkeyStr);
string memory ethAddressStr = Strings.toHexString(ethAddress);
// console.log("ethAddressStr");
// console.log(ethAddressStr);
string memory tokenIdStr = Strings.toString(tokenId);
string memory json = Base64.encode(
bytes(
string(
abi.encodePacked(
'{"name": "Lit PKP #',
tokenIdStr,
'", "description": "This NFT entitles the holder to use a Lit Protocol PKP, and to grant access to other users and Lit Actions to use this PKP", "image_data": "',
bytes(svgData),
'","attributes": [{"trait_type": "Public Key", "value": "',
pubkeyStr,
'"}, {"trait_type": "ETH Wallet Address", "value": "',
ethAddressStr,
'"}, {"trait_type": "Token ID", "value": "',
tokenIdStr,
'"}]}'
)
)
)
);
return string(abi.encodePacked("data:application/json;base64,", json));
}
}
@openzeppelin/contracts/utils/Base64.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Base64.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides a set of functions to operate with Base64 strings.
*
* _Available since v4.5._
*/
library Base64 {
/**
* @dev Base64 Encoding/Decoding Table
*/
string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
/**
* @dev Converts a `bytes` to its Bytes64 `string` representation.
*/
function encode(bytes memory data) internal pure returns (string memory) {
/**
* Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
* https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
*/
if (data.length == 0) return "";
// Loads the table into memory
string memory table = _TABLE;
// Encoding takes 3 bytes chunks of binary data from `bytes` data parameter
// and split into 4 numbers of 6 bits.
// The final Base64 length should be `bytes` data length multiplied by 4/3 rounded up
// - `data.length + 2` -> Round up
// - `/ 3` -> Number of 3-bytes chunks
// - `4 *` -> 4 characters for each chunk
string memory result = new string(4 * ((data.length + 2) / 3));
/// @solidity memory-safe-assembly
assembly {
// Prepare the lookup table (skip the first "length" byte)
let tablePtr := add(table, 1)
// Prepare result pointer, jump over length
let resultPtr := add(result, 32)
// Run over the input, 3 bytes at a time
for {
let dataPtr := data
let endPtr := add(data, mload(data))
} lt(dataPtr, endPtr) {
} {
// Advance 3 bytes
dataPtr := add(dataPtr, 3)
let input := mload(dataPtr)
// To write each character, shift the 3 bytes (18 bits) chunk
// 4 times in blocks of 6 bits for each character (18, 12, 6, 0)
// and apply logical AND with 0x3F which is the number of
// the previous character in the ASCII table prior to the Base64 Table
// The result is then added to the table to get the character to write,
// and finally write it in the result pointer but with a left shift
// of 256 (1 byte) - 8 (1 ASCII char) = 248 bits
mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
resultPtr := add(resultPtr, 1) // Advance
}
// When data `bytes` is not exactly 3 bytes long
// it is padded with `=` characters at the end
switch mod(mload(data), 3)
case 1 {
mstore8(sub(resultPtr, 1), 0x3d)
mstore8(sub(resultPtr, 2), 0x3d)
}
case 2 {
mstore8(sub(resultPtr, 1), 0x3d)
}
}
return result;
}
}
@openzeppelin/contracts/utils/Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
import "./math/Math.sol";
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
@openzeppelin/contracts/utils/math/Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}